Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination.
نویسندگان
چکیده
The active uptake of extracellular DNA and its genomic integration is termed natural transformation and constitutes a major horizontal gene-transfer mechanism in prokaryotes. Chromosomal DNA transferred within a species can be integrated effectively by homologous recombination, whereas foreign DNA with low or no sequence homology would rely on illegitimate recombination events, which are rare. By using the nptII(+) gene (kanamycin resistance) as selectable marker, we found that the integration of foreign DNA into the genome of the Gram-negative Acinetobacter sp. BD413 during transformation indeed was at least 10(9)-fold lower than that of homologous DNA. However, integration of foreign DNA increased at least 10(5)-fold when it was linked on one side to a piece of DNA homologous to the recipient genome. Analysis of foreign DNA integration sites revealed short stretches of sequence identity (3-8 bp) between donor and recipient DNA, indicating illegitimate recombination events. These findings suggest that homologous DNA served as a recombinational anchor facilitating illegitimate recombination acting on the same molecule. Homologous stretches down to 183 nucleotides served as anchors. Transformation with heteroduplex DNA having different nucleotide sequence tags in the strands indicated that strands entered the cytoplasm 3' to 5' and that strands with either polarity were integrated by homologous recombination. The process led to the genomic integration of thousands of foreign nucleotides and often was accompanied by deletion of a roughly corresponding length of recipient DNA. Homology-facilitated illegitimate recombination would explain the introgression of DNA in prokaryotic genomes without the help of mobile genetic elements.
منابع مشابه
Low Efficiency of Homology-Facilitated Illegitimate Recombination during Conjugation in Escherichia coli
Homology-facilitated illegitimate recombination has been described in three naturally competent bacterial species. It permits integration of small linear DNA molecules into the chromosome by homologous recombination at one end of the linear DNA substrate, and illegitimate recombination at the other end. We report that homology-facilitated illegitimate recombination also occurs in Escherichia co...
متن کاملRestriction enzymes increase efficiencies of illegitimate DNA integration but decrease homologous integration in mammalian cells.
Mammalian cells repair DNA double-strand breaks by illegitimate end-joining or by homologous recombination. We investigated the effects of restriction enzymes on illegitimate and homologous DNA integration in mammalian cells. A plasmid containing the neo(R) expression cassette, which confers G418 resistance, was used to select for illegitimate integration events in CHO wild-type and xrcc5 mutan...
متن کاملDirected introduction of DNA cleavage sites to produce a high-resolution genetic and physical map of the Acinetobacter sp. strain ADP1 (BD413UE) chromosome.
The natural transformability of the soil bacterium Acinetobacter sp. ADP1 (BD413UE), formerly classified as A. calcoaceticus, has facilitated previous physiological and biochemical investigations. In the present studies, the natural transformation system was exploited to generated a physical and genetic map of this strain's 3780 +/- 191 kbp circular chromosome. Previously isolated Acinetobacter...
متن کاملIntegration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination.
Agrobacterium tumefaciens can transfer part of its Ti plasmid, the T-DNA, to plant cells where it integrates into the nuclear genome via illegitimate recombination. Integration of the T-DNA results in small deletions of the plant target DNA, and may lead to truncation of the T-DNA borders and the production of filler DNA. We showed previously that T-DNA can also be transferred from A. tumefacie...
متن کاملImpact of mutS inactivation on foreign DNA acquisition by natural transformation in Pseudomonas stutzeri.
In prokaryotic mismatch repair the MutS protein and its homologs recognize the mismatches. The mutS gene of naturally transformable Pseudomonas stutzeri ATCC 17587 (genomovar 2) was identified and characterized. The deduced amino acid sequence (859 amino acids; 95.6 kDa) displayed protein domains I to IV and a mismatch-binding motif similar to those in MutS of Escherichia coli. A mutS::aac muta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 4 شماره
صفحات -
تاریخ انتشار 2002